C1 monotone cubic Hermite interpolant

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multivariate refinable Hermite interpolant

We introduce a general definition of refinable Hermite interpolants and investigate their general properties. We also study a notion of symmetry of these refinable interpolants. Results and ideas from the extensive theory of general refinement equations are applied to obtain results on refinable Hermite interpolants. The theory developed here is constructive and yields an easyto-use constructio...

متن کامل

C1 Hermite interpolation with spatial Pythagorean-hodograph cubic biarcs

In this paper the C Hermite interpolation problem by spatial Pythagorean-hodograph cubic biarcs is presented and a general algorithm to construct such interpolants is described. Each PH cubic segment interpolates C data at one point and they are then joined together with a C continuity at some unknown common point sharing some unknown tangent vector. Biarcs are expressed in a closed form with t...

متن کامل

HIERARCHICAL COMPUTATION OF HERMITE SPHERICAL INTERPOLANT

In this paper, we propose to extend the hierarchical bivariateHermite Interpolant to the spherical case. Let $T$ be an arbitraryspherical triangle of the unit sphere $S$ and  let $u$ be a functiondefined over the triangle $T$. For $kin mathbb{N}$, we consider aHermite spherical Interpolant problem $H_k$ defined by some datascheme $mathcal{D}_k(u)$ and which admits a unique solution $p_k$in the ...

متن کامل

A C1 Multivariate Clough–Tocher Interpolant

We show that in dimensions four and higher, to insure a smooth interpolant, additional geometric constraints must be imposed on the generalized Clough–Tocher split introduced in Worsey and Farin (Constr. Approx. 3:99–110, 1987).

متن کامل

Constrained Interpolation via Cubic Hermite Splines

Introduction In industrial designing and manufacturing, it is often required to generate a smooth function approximating a given set of data which preserves certain shape properties of the data such as positivity, monotonicity, or convexity, that is, a smooth shape preserving approximation.  It is assumed here that the data is sufficiently accurate to warrant interpolation, rather than least ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Letters

سال: 2012

ISSN: 0893-9659

DOI: 10.1016/j.aml.2012.02.050